TriangulateFace takes several arguments (cf. https://docs.techsoft3d.com/communicator/latest/build/api_ref/data_import/libsc/namespaceSC_1_1Store_1_1Utils.html#a10002aedb0ee2764603e5f5c0f5b9e07 ) to triangulate a supplied polygonal face. While most arguments are straightforward, the face_list
is a little more complicated.
The first number in the face list array indicates the number of indices defining a face. This is followed by those indices (in the points array). This pattern repeats for subsequent faces. If you have two triangles, the face list array might be as follows;
{ 3, 0, 1, 2, 3, 2, 3, 0 }
\uD83D\uDCD8 Instructions
Simple Example
Lets assume we have a single polygon with 300 points (nb_circle_steps
). This is all in one “face”. So, the correct code for this would be
std::vector<int> face_list; face_list.push_back(nb_circle_steps); for (uint32_t i = 0; i < nb_circle_steps; i++) face_list.push_back(i); std::vector<SC::Store::Point> out_points; bool triStatus = SC::Store::Utils::TriangulateFace(mesh_points.data(), face_list.data(), face_list.size(), SC::Store::Point(0, 0, 1), out_points); if (triStatus) std::cout << "TriangulateFace : out_points count = " << out_points.size() << std::endl; else std::cout << "TriangulateFace : failed" << std::endl;
Notice face_list.size()
is used as an argument to TriagulateFace
rather than nb_circle_steps
.
Concave Faces
This is the only triangulation function available in Communicator and it handles concave polygons. Consider this simple test.
int point_count = 5; std::vector<int> face_list; face_list.push_back(point_count); for (uint32_t i = 0; i < point_count; i++) face_list.push_back(i); std::vector<SC::Store::Point> poly_points; poly_points.resize(point_count); poly_points[0].x = 0; poly_points[0].y = 0; poly_points[0].z = 0; poly_points[1].x = 1; poly_points[1].y = 1; poly_points[1].z = 0; poly_points[2].x = 2; poly_points[2].y = 0; poly_points[2].z = 0; poly_points[3].x = 1; poly_points[3].y = 2; poly_points[3].z = 0; poly_points[4].x = 0; poly_points[4].y = 0; poly_points[4].z = 0; std::vector<SC::Store::Point> out_points; bool triStatus = SC::Store::Utils::TriangulateFace(poly_points.data(), face_list.data(), face_list.size(), SC::Store::Point(0, 0, 1), out_points);
The result was
+ [0] {x=1.00000000 y=2.00000000 z=0.00000000 } SC::Store::Point + [1] {x=0.00000000 y=0.00000000 z=0.00000000 } SC::Store::Point + [2] {x=1.00000000 y=1.00000000 z=0.00000000 } SC::Store::Point + [3] {x=1.00000000 y=2.00000000 z=0.00000000 } SC::Store::Point + [4] {x=1.00000000 y=1.00000000 z=0.00000000 } SC::Store::Point + [5] {x=2.00000000 y=0.00000000 z=0.00000000 } SC::Store::Point
Faces with Holes
This method supports holes as well. It expects more than one face passed in where one face represents the perimeter and subsequent faces represent holes. Simply negate the first parameter in the face list for a face which represents a hole.
int perim_count = 4; int hole_count = 4; int point_count = perim_count + hole_count; std::vector<int> face_list; for (uint32_t i = 0; i < point_count; i++) { if (i == 0) face_list.push_back(perim_count); else if (i == 4) face_list.push_back(-hole_count); // negated parameter indicates this face is a hole face_list.push_back(i); } std::vector<SC::Store::Point> poly_points; poly_points.push_back(SC::Store::Point(0, 0, 0)); // perimeter poly_points.push_back(SC::Store::Point(3, 0, 0)); poly_points.push_back(SC::Store::Point(3, 3, 0)); poly_points.push_back(SC::Store::Point(0, 3, 0)); poly_points.push_back(SC::Store::Point(1, 1, 0)); // hole poly_points.push_back(SC::Store::Point(2, 1, 0)); poly_points.push_back(SC::Store::Point(2, 2, 0)); poly_points.push_back(SC::Store::Point(1, 2, 0)); std::vector<SC::Store::Point> out_points; bool triStatus = SC::Store::Utils::TriangulateFace(poly_points.data(), face_list.data(), face_list.size(), SC::Store::Point(0, 0, 1), out_points); if (triStatus) std::cout << "TriangulateFace : out_points count = " << out_points.size() << std::endl; else std::cout << "TriangulateFace : failed" << std::endl;